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1 Motivation

When we deal with non linear models, it is not longer valid to use the Ordinary Least Squares
(OLS) approach. For instance, consider the Poisson regression model:

yi = ex
′
iθ0 + εi (1.1)

The problem with this model is that we no longer have a closed form solution for nonlinear
estimators, so we have to estimate θ0 using numerical optimization along with several properties
we know for extremum estimators. Below I cover several methods to deal with this problem and
study their behavior at the limit.

2 Non Linear Least Squares

2.1 Specification

Suppose we are interested in specifying and estimating a model for predicting the conditional mean
E[yi|xi]. We let m(xi,θ0) denote a finite parametric model for E[yi|xi], which can or cannot be a
linear function of θ0. The functional form of m(xi,θ0) can come from economic theory, assumptions
on the conditional distribution, f(yi|xi), or just from intuition so as to approximate the unknown
functional form of E[yi|xi].

Accordingly, we can specify some common estimators as Non Linear Squares (NLLS):

• Poisson regression model: m(xi,θ0) = ex
′
iθ0

• Probit model: m(xi,θ0) = Φ(xi,θ0)1

• Logistic model: m(xi,θ0) = ex
′
iθ0

1+ex
′
i
θ0

• Censored y model: m(xi,θ0) = Φ(xi,θ0)× (x′iθ0) + Φ(xi,θ0)

1Φ() = cdf of N(0, 1)
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2.2 Estimation

Following our underlying assumption of E[yi|xi] = m(xi,θ0), we can proceed to estimate θ0 by
minimizing the mean squared error (MSE):

θ0 ≡ min
θ0∈Θ

E[yi −m(xi,θ0)]2 (2.1)

This expression should be familiar, as the OLS is based on the same logic, where m(xi,θ0) is
linear on θ0. Now, having a clear grasp on the assumptions about E[yi|xi] = m(xi,θ0), we can
talk about extremum estimators which are analogous to this model.

3 Extremum Estimators

Extremum estimators is a class of estimators that maximize an objective function that depends on
the data and an unknown parameter over a parameter set. Formally:

θ̂ = argmax
θ∈Θ

Qn(θ), Qn(θ) =
1

n

n∑
i=1

a(wi,θ) (3.1)

Where wi = (yi,xi) is the vector of data for observation i.
If we recall some common estimators, all of them can be formulated as extremum estimators:

• OLS: Qn(θ) = − 1
n

n∑
i=1

(yi − x′iθ)2, which implies a(wi,θ) = −(yi − x′iθ)2

• NLLS: Qn(θ) = − 1
n

n∑
i=1

(yi −m(xi,θ))2, where m(xi,θ0) ≡ E[yi|xi]

• MLE: Qn(θ) = − 1
n

n∑
i=1

ln[f(yi|xi;θ)], where f(yi|xi;θ) is the density function yi|xi

• GMM: Qn(θ) = −
(

1
n

n∑
i=1

g(wi,θ)

)′
Wn

(
1
n

n∑
i=1

g(wi,θ)

)
3.1 Consistency

To evaluate the consistency of extremum estimators we need to define:

Q0(θ) ≡ plimQn(θ) (3.2)

and

θ0 ≡ argmax
θ∈Θ

Q0(θ) (3.3)

≡ argmax
θ∈Θ

[plimQn(θ)] (3.4)

Recall from (3.1):

θ̂ = argmax
θ∈Θ

Qn(θ)

=⇒ plim(θ̂) = plim

(
argmax
θ∈Θ

Qn(θ)

)
(3.5)
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So, to ensure consistency, we need to show that plim(θ̂) = θ0, formally that:

plim(θ̂) ≡ plim

(
argmax
θ∈Θ

Qn(θ)

)
= argmax

θ∈Θ
[plim (Qn(θ))] ≡ θ0 (3.6)

It turns out, that if our objective function satisfies some regularity conditions we can ensure
the consistency of our estimator. However, we need one definition before doing that:

Definition 3.1. Pointwise Convergence in Probability. In a repeated sampling experiment,
Qn(θ) is a sequence of random functions. We say that Qn(θ) converges pointless in probability to
a non-random function Q0(θ) if:

plim (Qn(θ)) = Q0(θ), ∀ θ ∈ Θ (3.7)

Although it might seem confusing, pointwise convergence is the same as convergence in prob-
ability, but it applies to random functions. We can use a weak Law of Large Numbers (LLN) to
show pointwise convergence in probability. Sometimes, however, even if Qn(θ) is continuous in θ,
the limit function Q0(θ) may not be. In this case we use the uniform LLN (Appendix A.1).

Now that we have all the tools we need to establish the conditions for consistency. We refer to
Newey and McFadden (1994), or N&M, to deal with the proper formalities of establish consistency.
For a general objective function we know that if the conditions for Theorem 2.1 are satisfied
(Appendix A.2), the estimator is consistent. Moreover, if we have a concave objective function, if
the conditions for Theorem 2.7 (Appendix A.3) are satisfied, the estimator is consistent.

3.2 Asymptotic Normality of Extremum Estimators

In the case of OLS, we used its asymptotic properties to establish its behavior at the limit. We can
do the same with extremum estimators, where given certain conditions (Appendix A.8), we can
show their asymptotic normality. First, we need to note that:

θ̂ = argmax
θ∈Θ

Qn(θ)

=⇒ ∇θQn(θ̂) = 0 (3.8)

Provided that it is continuously differentiable, the first order conditions (FOCs) will admit a
mean-value expansion around θ0:

∇θQn(θ̂) = ∇θQn(θ0) +∇θθQn(θ̄)(θ̂ − θ0) = 0 (3.9)

with θ̄ as a mean value between θ̂ and θ0. We can therefore rearrange as follows:

√
n(θ̂ − θ0) = −

(
∇θθQn(θ̄)

)−1√
n∇θQn(θ0)

= −

(
1

n

n∑
i=1

∇θθa(wi, θ̄)

)−1
√
n

1

n

n∑
i=1

∇θa(wi,θ0) (3.10)

Notice that the identification assumption for the consistency theorems implies:

E[∇θa(wi,θ0)] = 0
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So, this situation already looks like a Central Limit Theorem (CLT). If we recall the conditions
necessary, provided that J ≡ E[∇θa(wi,θ0)∇θa(wi,θ0)′] < ∞, and given that we have data that
is independently and identically distributed (iid):

√
n

1

n

n∑
i=1

∇θa(wi,θ0)
d−→ N(0, J) (3.11)

For the remaining component we can use the uniform LLN:

1

n

n∑
i=1

∇θθa(wi, θ̄)
p−→ E[∇θθa(wi,θ0)] ≡ H (3.12)

Note that since we defined θ̄ as some value between θ̂ and θ0, and given the consistency of θ̂, it
must converge to θ0.

Finally, and using the Continuous Mapping Theorem we have:(
1

n

n∑
i=1

∇θθa(wi, θ̄)

)−1
p−→ E[∇θθa(wi,θ0)]−1 = H−1 (3.13)

Provided that H is invertible, by equations (3.12) and (3.14) we use the scaling properties of
normally distributed variables and get the asymptotic normality of extremum estimators:

√
n(θ̂ − θ0)

d−→ N(0, H−1JH−1) (3.14)

4 Large Sample Properties of the Maximum Likelihood Estimator

As we noted before, the Maximum Likelihood Estimator (MLE) can be expressed as an extremum
estimator. Recall that given a probability distribution (pdf) for which we have an iid sample wi, we
estimate the parameter value θ0. Take note that this an untestable assumption and it completely
drives the results.

The MLE of θ0 is the value of θ that maximizes the likelihood function. That is, the probability
of observing the sample wi we have drawn, given the distributional assumptions we make on the
population.

4.1 Conditional and Unconditional Likelihood

Suppose that we draw the sample wi = (yi,xi) : i = 1, ..., n from a well defined population. Then
the probability density function of each draw wi is f(wi; Ψ0) or f(yi,xi; Ψ0). The parameter Ψ0

fully characterizes the pdf, so with knowledge of f and Ψ0 we can generate the sample (i.e., normal
distribution Ψ = (µ, σ2)). Because the sample is iid, the joint density of the sample is given by the
product of the marginals:

f(w1, ...,wn; Ψ0) =

n∏
i=1

f(wi; Ψ0) (4.1)

The likelihood function is obtained by replacing the true parameter value, Ψ0, by an hypothetical
value, Ψ, and interpreting the joint pdf as a function of Ψ where the sample is fixed:

L(Ψ;w1, ...,wn) = L(Ψ) =

n∏
i=1

f(wi,Ψ) (4.2)
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We can proceed further and take logs to get the log-likelihood of the joint distribution:

ln[L(Ψ;w1, ...,wn)] = ln[L(Ψ)] =
n∑
i=1

ln[f(wi,Ψ)] (4.3)

Now, recall that the definition of a conditional probability is P (A|B) = P (A,B)/P (B), so we
can apply this property to the probability density function:

f(yi,xi; Ψ0) = f(yi|xi;θ0)× f(xi; γ0) (4.4)

where θ0 is the parameter of interest, and γ0 is a nuisance parameter of the marginal distribution
of xi.

As the name suggest, we want to estimate θ0 such as to maximize the previous maximum
likelihood function. The issue is that we just added another probability density function, f(xi; γ0),
to the problem. Nonetheless, when we take logs we can get rid of the last term and obtain the
following expression:

ln[L(Ψ)] =

n∑
i=1

ln[f(wi,Ψ)] =

n∑
i=1

ln[f(yi|xi;θ0)] +

n∑
i=1

ln[f(xi; γ0)] (4.5)

Note that when we take partial derivatives to maximize (4.5) as a function of θ0, we drop the
last term. Now, we can formulate the MLE as an extremum estimator as:

θ̂ = argmax
θ∈Θ

1

n

n∑
i=1

ln[f(yi|xi;θ)] (4.6)

To see how the MLE operates for different distributions we can take a look at some examples:

1. Normal regression model: Let yi|xi ∼ N(x′iβ0, σ
2). The conditional pdf is given by:

f(yi|xi;θ0) =
1√

2πσ0

e
− 1

2

(yi−x
′
iβ0)

2

σ20 , θ0 = (β0, σ
2) (4.7)

Then, the MLE is given by:

θ̂ = argmax
θ∈Θ

1

n

n∑
i=1

(
− ln[

√
2π]− ln[σ]− 1

2

(yi − x′iβ)2

σ2

)
(4.8)

2. Poisson Regression Model: Let Let yi|xi ∼ P(λ0) with yi = 0, 1, .., n and E[yi|xi] = λ0 and

V ar(yi|xi) = λ0. Where is often common to let λ0 = ex
′
iθ0 . The conditional pdf is given by:

f(yi|xi;θ0) =
eyix

′
iθ0e−e

x′iθ0

yi!
(4.9)

It follows that the 1951 estimator is:

θ̂ = argmax
θ∈Θ

1

n

n∑
i=1

(
−ex′iθ0 + yix

′
iθ0 − ln[yi!]

)
(4.10)
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4.2 Consistency and Asymptotic Normality of MLE

If we have wi, a set of iid data drawn from the conditional pdf f(yi|xi;θ0), where f(yi|xi;θ0) > 0
and

∫
f(yi|xi;θ0)dy = 1 ∀ θ ∈ Θ. If, in addition, the regularity conditions from N&M are met

(Appendix A.5) for our MLE θ̂. Then we have that the estimator is consistent, θ̂
p−→ θ0.

If we maintain the assumptions for consistency, and define some regularity conditions on our
estimator (Appendix A.6), we have have everything we need to derive the asymptotic distribution
of the MLE. Since data is iid, and given the zero expected score result below, we have that:

√
n∇θQn(θ0) =

√
n

1

n

n∑
i=1

∇θ ln[f(yi|xi;θ0)]

=⇒ E[∇θ ln[f(yi|xi;θ0)]] = 0 (By identification) (4.11)

Provided that J ≡ E[(∇θ ln[f(yi|xi;θ0)])(∇θ ln[f(yi|xi;θ0)])′] < ∞, using the CLT gives the
following:

√
n

1

n

n∑
i=1

∇θ ln[f(yi|xi;θ0)]
d−→ N(0, J) (4.12)

Continuity and uniform convergence of the expected Hessian, H(θ) ≡ ∇θθQ0(θ) = E[ln[f(yi|xi;θ0)]],
ensures that:

∇θθQn(θ) =
1

n

n∑
i=1

ln[f(yi|xi;θ0)]
u.p.−−→ H(θ) (4.13)

So, provided that the limit Hessian is invertible, H(θ)−1 <∞, we finally have:

√
n(θ̂ − θ0)

d−→ N(0, H−1JH−1) = N(0, J−1) (4.14)

The result on the asymptotic variance of the MLE, J = −H, is known as the information matrix
equality.

4.3 Specific Results to MLE

Likelihood ratio test
Suppose we are interested in testing H0 : r(θ0) = 0 against the two sided alternative. One

approach is the Wald test based on the unconstrained estimator of θ0:

Ŵ = nr(θ̂)′[R(θ̂)Ĵ−1R(θ̂)′]−1r(θ̂)
d−→ χ2

(q) (4.15)

On the other hand, we could also use the likelihood ratio test, which consists in comparing the
value of the log-likelihood function at the constrained estimate of θ0 constrained under H0 and the
unconstrained one:

θ̂ = argmax
θ∈Θ

n∑
i=1

ln[f(yi|xi;θ)] = argmax
θ∈Θ

LU (θ) (4.16)

θ̃ = argmax
θ∈Θ:r(θ)=0

n∑
i=1

ln[f(yi|xi;θ)] = argmax
θ∈Θ:r(θ)=0

LR(θ) (4.17)

Then, it follows that:

LR = 2(LU (θ̂)− LR(θ̃))
d−→ χ2

q (4.18)
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Zero Expected Score
Under the MLE assumptions, we can show that J = −H. First, consider:∫

f(yi|xi;θ)dy = 1

=⇒ ∇θ
∫
f(yi|xi;θ)dy = 0 (Diff w.r.t θ) (4.19)

Under the regularity conditions from N&M, which make f(yi|xi;θ) smooth enough, differen-
tiable, and with derivative function bounded, we can interchange integration and differentiation.
Operationally, this property implies:

∇θ
∫
f(yi|xi;θ)dy = 0

=⇒
∫
∇θf(yi|xi;θ)dy = 0

⇐⇒
∫
f(yi|xi;θ)

f(yi|xi;θ)
∇θf(yi|xi;θ)dy = 0 (Multiply by 1)

=⇒
∫
∇θ ln[f(yi|xi;θ0)]f(yi|xi;θ0)dy = 0 (Evaluate at θ0)

⇐⇒ E[∇θ ln[f(yi|xi;θ0)] = 0 (Definition of E) (4.20)

So, we have showed the condition we required for the first part of the asymptotic distribution.
Now we can also use the chain rule to get to the final result:

∇θ
∫
∇θ ln[f(yi|xi;θ)]f(yi|xi;θ)dy = 0

⇐⇒
∫
∇θ (∇θ ln[f(yi|xi;θ)]f(yi|xi;θ)dy) = 0

=⇒
∫
∇θ (∇θ ln[f(yi|xi;θ)]f(yi|xi;θ)dy) =

∫
∇θθ ln[f(yi|xi;θ)]f(yi|xi;θ)dy

+

∫
(∇θ ln[f(yi|xi;θ)])(∇θf(yi|xi;θ))′dy

For this expression, we can use the same trick as before:

0 =

∫
∇θθ ln[f(yi|xi;θ)]f(yi|xi;θ)dy +

∫
(∇θ ln[f(yi|xi;θ)])

(
∇θ

f(yi|xi;θ)

f(yi|xi;θ)
f(yi|xi;θ)

)′
dy

0 =

∫
∇θθ ln[f(yi|xi;θ)]f(yi|xi;θ)dy +

∫
(∇θ ln[f(yi|xi;θ)]) (∇θ ln[f(yi|xi;θ)])′ dy

=⇒
∫
∇θθ ln[f(yi|xi;θ)]f(yi|xi;θ)dy = −

∫
(∇θ ln[f(yi|xi;θ)]) (∇θ ln[f(yi|xi;θ)])′ f(yi|xi;θ)dy

Now we can plug for θ0:

∫
∇θθ ln[f(yi|xi;θ0)]f(yi|xi;θ0)dy = −

∫
(∇θ ln[f(yi|xi;θ0)]) (∇θ ln[f(yi|xi;θ0)])′ f(yi|xi;θ0)dy

E[∇θθ ln[f(yi|xi;θ0)] = −E[(∇θ ln[f(yi|xi;θ0)]) (∇θ ln[f(yi|xi;θ0)])′

J = −H (4.21)
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Some comments on MLE
As we just showed, MLE is efficient (smallest asymptotic variance) amongst all estimators that

are consistent and asymptotically normal, Avar = J−1, instead ofAvar = H−1JH−1. Nevertheless,
we have to keep in mind that MLE is not robust to mistakes on the distribution assumptions;
therefore, misspecification can lead to inconsistency. Moreover, for small samples, even the correct
distributional assumptions will still render a poor estimation.

5 Large Sample Properties of Generalized Method of Moments
Estimators

The method of moments (MM) of the generalized method of moments (GMM) estimates population
parameters by a process of matching population moments (which are a function of the parameters
of interest) with sample moments. For example, let’s take a sample from the uniform distribution:
yi ∼ U [θ0], where θ0 = b− a. The density function of this distribution is given by:

f(y) =
1

θ0
, 0 ≤ y ≤ θ0 (5.1)

E[y] =

θ0∫
0

yf(y)dy =

θ0∫
0

y

θ0
dy =

θ0

2
(5.2)

Now consider:

g1(yi, θ) = yi −
θ

2
(5.3)

such that:

E[g1(yi, θ0)] = 0

⇐⇒ E
[
yi −

θ0

2

]
= 0

⇐⇒ E[yi]− E
[
θ0

2

]
= 0 (By linearity of E)

=⇒ θ0 = 2E[yi] (5.4)

Therefore, the MM estimator simply replaces the sample analog for the expected value:

θ̂MM,1 = 2
1

n

n∑
i=1

yi (5.5)

With respect to the other moment, consider:

E[y2] =

θ0∫
0

y2f(y)dy =

θ0∫
0

y2

θ0
dy =

θ2
0

3
(5.6)

so we can define another similar function:

g2(yi, θ) = y2
i −

θ2

3
(5.7)
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which we can use to estimate our parameter as follows:

E[y2
i ] = E

[
θ2

0

3

]
=⇒ θ0 =

√
3E[y2

i ]

=⇒ θ̂MM,2 =

√√√√3
1

n

n∑
i=1

(y2
i )

(5.8)

This simple example allows us to say a couple things about method of moments. First, that
models can be over-identified, which means that there are more moments than unknown parameters.
Second, GMM allows to optimally combine different estimators in over-identified models. For
example, in the previous example we could derive +∞moment conditions. To solve this multiplicity
problem, one can always refer to E[εi|xi] = 0, or we one could choose the K best moment conditions
for a given model, which brings us to the next section.

5.1 Setup of the GMM Estimator

Let g(wi,θ) be a [q, 1] vector (q ≥ K) of moment conditions such that E[g(wi,θ)] = 0 only when
evaluated at θ = θ0. Suppose that we have a random sample of iid data {wi = (yi,xi) : 1, ..., n}
from which we want to estimate a [K, 1] vector of parameters, θ0. Then, let:

gn(wi,θ) =
1

n

n∑
i=1

g(wi,θ) (5.9)

be the sample moments corresponding to E[g(wi,θ)].
The GMM estimator of θ0 is the value of θ that sets the sample moment condition as close as

possible to 0. In particular, there are two possible cases:
Case 1: Exactly-identified models: If the model is exactly identified (q = K), or that the

parameters we want estimate match the moment conditions, then there is a unique θ̂ that sets the
sample moments exactly to 0:

gn(wi, θ̂) =
1

n

n∑
i=1

g(wi, θ̂) = 0 (5.10)

Case 2: Over-identified models: If the model is over identified (q > K), then there are no
unique θ̂ that sets the sample moments exactly to 0, so multiple solutions exists just as the uniform
example we covered earlier. Instead, we are looking for the vector θ̂ that makes the sample moments
as close as possible to 0 in the following quadratic form:

θ̂ = argmax
θ∈Θ

−

(
1

n

n∑
i=1

g(wi,θ)

)′
Wn

(
1

n

n∑
i=1

g(wi,θ)

)
= argmax

θ∈Θ
−gn(wi,θ)′Wngn(wi,θ) (5.11)

with Wn as a positive semi-definite weighting matrix that could be stochastic or deterministic.
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Whenever Wn is stochastic, it converges in probability to W and does not depend on θ. This
probability limit is positive definite, and it assigns the weights given to each moment conditions in
estimating θ0. Whenever the model is just identified, the choice of Wn does not matter.

A natural question that arises after this definition is where these moments conditions come
from, and the answer is from three possible places. Consider the following examples:

1. Assumed orthogonality assumptions: Recall the simple linear model yi = x′iθ + εi. If
there’s no endogeneity, we have:

E[xiεi] = 0

⇐⇒ E[xi(yi − x′iθ0)] = 0

=⇒ g(wi,θ) = xi(yi − x′iθ0) (5.12)

If we were to include an instrumental variable zi:

E[ziεi] = 0

⇐⇒ E[zi(yi − x′iθ0)] = 0

=⇒ g(wi,θ) = zi(yi − x′iθ0) (5.13)

2. Distributional assumptions: Recall that NLLS or MLE require assumptions about the
population underlying distribution for their FOCs. For instance, the zero expected score
result for the MLE says that:

E[∇θ ln(yi|xi;θ0)] = 0

=⇒ g(wi,θ) = ∇θ ln(yi|xi;θ0) (5.14)

3. Economic theory: Theoretical derivations also allow us to specify moment conditions. For
example, in a consumption-based asset pricing model we know that the Euler Equation is:

u′(ct) = Et[(1 + rt+1)u′(ct+1)|It]

=⇒ 0 = Et
[
(1 + rt+1)

u′(ct+1)

u′(ct)
|It
]
− 1 (5.15)

Consider the power utility function u(c) = c1−θ0−1
1−θ0 =⇒ u′(c) = c−θ0 . If we want to estimate

θ0, now we have:

gt(θ) = (1 + rt+1)
u′(ct+1)

u′(ct)
− 1

E[gt(θ)|It] = 0 (5.16)

To implement, we condition on a vector of observed data zt ∈ It. Then, using the law of
iterated expectations we get our moment condition:

E[E[gt(θ)|It]zt] = E[gt(θ)zt]

=⇒ E[gt(θ)zt] = 0 (5.17)

11



5.2 Consistency and Asymptotic Distribution of the GMM

To show consistency for the GMM estimator, we will again rely on the regularity conditions from
N&M (Appendix A.7). Suppose we have a sample of iid datawi, where Wn

p−→W , a positive definite
matrix. Then let θ0 be a [K, 1] vector and be such that q ≥ K population moment conditions are
satisfied at θ0 : E[g(wi,θ0)] = 0. Then, if the regularity conditions are met, the estimator is

consistent, θ̂
p−→ θ0.

Same as before, provided that the regularity conditions hold (Appendix A.8), if we let Ω ≡
E[(g(wi,θ0))(g(wi,θ0))′], and G(θ) ≡ E[∇θg(wi,θ0)] with G = G(θ0), then:

√
n(θ̂ − θ0)

d−→ N(0, (G′WG)−1G′WΩWG(G′WG)−1) (5.18)

If W = Ω−1, then it follows that:
√
n(θ̂ − θ0)

d−→ N(0, (G′Ω−1G)−1) (5.19)

As with our previous estimators, it is worth spending some time deriving the asymptotic variance

of the estimator. We begin with the definition of the moment conditions
√
ngn(θ)

d−→ N(0,Ω), and
then follow the steps below:

Step 1: Take the FOCs of the GMM maximization problem:

∇θQn(θ̂) = −2Gn(wi, θ̂)′Wngn(wi, θ̂) = 0 (5.20)

with Gn(wi, θ̂) = ∇θgn(wi, θ̂).
Step 2: Take a mean value expansion of the sample moment conditions around θ0 and plug

the FOC:
gn(wi, θ̂) = gn(wi,θ0) +Gn(wi, θ̄)(θ̂ − θ0) (5.21)

Substitute (5.21) into (5.20):

∇θQn(θ̂) = −2Gn(wi, θ̂)′Wn

(
gn(wi,θ0) +Gn(wi, θ̄)(θ̂ − θ0)

)
= 0

⇐⇒ Gn(wi, θ̂)′WnGn(wi, θ̄)(θ̂ − θ0) = Gn(wi, θ̂)′Wngn(wi,θ0)

=⇒ (θ̂ − θ0) =
(
Gn(wi, θ̂)′WnGn(wi, θ̄)

)−1
Gn(wi, θ̂)′Wngn(wi,θ0) (5.22)

Using our moment condition, we also know that:
√
ngn(θ)

d−→ N(0,Ω) (5.23)

The regularity conditions ensure that Wn
p−→ W and G(•) → G, so we can use Slutsky and the

Central Moment theorem to get:
√
n(θ̂ − θ0)

d−→ N(0, (G′WG)−1G′WΩWG(G′WG)−1)

If W = −Ω, or the efficient GMM estimator, then it is true that:
√
n(θ̂ − θ0)

d−→ N(0, (G′Ω−1G)−1)

Nevertheless, recall that Ω = E[(g(wi,θ0))(g(wi,θ0))′], which is a function of that unknown
parameter, so we need to estimate it. Suppose we estimate θ0 using GMM with W = Iq. The
resulting estimator of θ0, θ̃0,is consistent but inefficient. But, we can still use it as follows:

Ω̂ =
1

n

n∑
i=1

(g(wi, θ̃))(g(wi, θ̃))′ (5.24)

The GMM estimator using Ω̂−1 will be consistent and efficient.
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5.3 Extensions

Specification tests in over-identified models
GMM has the nice property of being able to deal with over identified in the most efficient way.

The test statistic is based on the difference between the objective function and zero. The closer to
0, the more evidence towards the assumptions of the model; moreover, towards the validity of the
assumed moment condition assumption E[g(wi,θ0)] = 0.

In particular, we have:

J = nQn(θ0) = ng(wi,θ0)′Ω−1g(wi,θ0)
d−→ χ2(q) (5.25)

Ĵ = nQn(θ̂) = ng(wi, θ̂)′Ω−1g(wi, θ̂)
d−→ χ2(q −K) (5.26)

Bear in mind that this property requires the estimates to be consistent.

GMM distance statistic
Consider the following null hypothesis: H0 : r(θ0) with H1 : r(θ0) 6= 0. The efficient GMM

estimator under the null (constrained) and alternative hypothesis (i.e., unconstrained) are:

θ̃ = argmax
θ∈Θ:r(θ)=0

Qn(θ) (5.27)

θ̂ = argmax
θ∈Θ

Qn(θ) (5.28)

Where Wn converges in probability to Ω−1. It follows that:

n
(
Qn(θ̂)−Qn(θ̃)

)
d−→ χ2

r (5.29)

with r as the number of restrictions tested.
The distance statistic test can perform better than the Wald test for nonlinear hypotheses,

although it is numerically equivalent to the Wald statistic for linear hypotheses. This result also
holds for non-efficient GMM, as long as the same weighting matrix is used for the restricted and
unrestricted estimation.

Two step estimation
Suppose we want to estimate the parameter θ0 from the following moment condition:

E[g(wi,θ0,γ0)] = 0 (5.30)

where γ0 is also an unknown parameter that is consistently estimated in a first step.
We are concerned with how the first stage estimation affects the consistency and asymptotic

distribution of θ̂. Some examples of this issue include the weighted least squares, IV in nonlinear
models, Heckman sample selection, etc.

Suppose that we are able to consistently estimate γ0 from the moment condition:

E[m(wi,γ0)] = 0 (5.31)

The estimation of θ0 and γ0 can be done through GMM by stacking the vector of moment condi-
tions:

g̃(wi,θ,γ) =

[
g(wi,θ,γ)
m(wi,γ)

]
(5.32)
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The GMM derived from this vector moment condition will be consistent, provided that the stacked
vector satisfies the identification requirement from the regularity conditions (Appendix A.7).

Despite the convenience of implementing a two-step estimator as a stacked GMM estimator, it
is common to estimate and analyze θ0 by using the following 1-step sample moment condition to
construct the GMM estimator:

1

n

n∑
i=1

g(wi,θ, γ̂) (5.33)

That is, it is still common to estimate θ0 while ignoring the effect of the sampling error that is
included in γ̂ on the variance of θ̂. The key question is whether the preliminary estimate of γ0 has
an impact on the asymptotic variance of θ̂. Can we derive Avar(θ̂) as if we knew γ0?

If E[∇γg(wi,θ0,γ0)] = 0, then the first stage estimation error in γ̂ is not passed through
θ̂. In such case, we proceed with forming a GMM using E[g(wi,θ0, γ̂)] = 0 and we treat γ̂ as
non-stochastic. If the requirement is not satisfied then we have:

Gθ = E[∇θg(wi,θ0,γ0)] (5.34)

Gγ = E[∇θg(wi,θ0,γ0)] (5.35)

M = E[∇γm(wi,γ0)] (5.36)

Ψ(wi) = −M−1m(wi,γ0) (5.37)

Then, provided that γ̂
p−→ γ0 and E[g(wi,θ0,γ0)] = 0, in addition with all the regularity conditions

for GMM estimators, we finally have:

√
n(θ̂ − θ0)

d−→ N(0, V ) (5.38)

V = G−1
θ E

[
(g(wi,θ0,γ0) +GγΨ(wi))(g(wi,θ0,γ0) +GγΨ(wi))

′]G−1
θ (5.39)

6 Binary Response Models

Binary response models deal with limited dependent variables such as binary responses, count/multinomial
data, censored regression models and continuous duration analysis. We will cover each of those and
see how they relate to the extremum estimators we have studied so far.

6.1 Binary Dependent Variables

Models with binary dependent variables are those such that yi ∈ {0, 1}. These models include
measures such application approval, currently employed, etc. Given this binary nature for the
dependent variable, the common linear model E[yi|xi] might be inappropriate. Accordingly, we
have two ways of dealing with this issue, probit and logit.

In binary response models we care about estimating the probability that yi takes the value
1, conditional on the covariates. This is often called response probability or probability of
success, although the event might not necessarily be a success. Formally:

P (xi) = Pr(yi = 1|xi) (6.1)

Because yi ∈ {0, 1}, yi|xi is a Bernoulli random variable, p(xi) fully characterizes the distribution
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and its properties:

Pr(yi = 1|xi) = f(1|xi) = p(xi)

Pr(yi = 0|xi) = f(0|xi) = 1− p(xi)
E[yi|xi] = p(xi)

V ar(yi|xi) = p(xi)(1− p(xi))

The linear probability model (LPM) for a binary response model is then given by:

Pr(yi = 1|xi) = E[y|xi] = x′iβ (6.2)

So we could write the regression equation:

yi = E[yi|xi] + εi

= x′iβ + εi (6.3)

LPM is a linear regression when the dependent variable is {0, 1}. The marginal change in xij
(when continuous), is given by:

∂

∂xij
Pr(yi = 1|xi) = βj (6.4)

with βj measuring the increase in the response probability associated with a unit increase in xij ,
holding all other x’s constant. Note that the marginal effect is constant, and therefore it does not
change with the value of xij .That property can be hard to justify in many situations.

The LPM has pros and cons, on one side it is the best linear predictor (BLP) of yi|xi in the MSE
sense, which requires one weak functional assumptions. It imposes no distributional assumptions
on ε|xi other than having mean 0. It is easy to interpret, and its limiting distribution is known
and simple:

√
n(β̂ − β)

d−→ N(H−1JH−1) (6.5)

H = E[xix
′
i] (6.6)

J = E[ε2xix
′
i] (6.7)

Nonetheless and given its structure, PLM can predict probabilities greater than 1 or smaller
than 0 as a direct result of the linearity of the conditional expected function, which we saw rendered
constant marginal effects. In other words, that a 1-unit increase in xij always changes Pr(yi = 1|xi)
by the same amount regardless of the initial value of xij . We can fix this linearity issue by completely
saturating the model, or having 1 dummy variable for every permutation vector xi, then the PLM
will be completely general. In this case, the fitted probabilities are simply the average of yi in each
of the cells defined by vector xi, which are always between 0 and 1 by definition.

Another issue with LPM is that the model is heteroskedactic by construction since the variance
of yi|xi is p(xi|)(1−p(xi)). This property affects inference, but not the consistency of the estimator.
We could use heteroskedastic-robust inferences, or correct by using weighted least squares where
the weight is given by: √

p(xi)(1− p(xi)) (6.8)
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6.2 Probit and Logit

To solve the shortcuts of a constant marginal effect on the covariates, we can use models that
restrict the functional form of the response probability such that 0 < Pr(yi = 1|xi) < 1. Formally:

Pr(yi = 1|xi) = F (x′iβ), 0 < F (z) < 1 ∀ z (6.9)

These are called index models because they efficiently restrict the way in which the response
probability depends on xi. Pr(yi = 1|xi) depends on xi only through the index x′iβ. In most
applications F (•) will be a cumulative distribution function. Now we can introduce two index
models known as the probit and logit models:

• Probit model:

Pr(yi = 1|xi) = Φ(x′iβ) (6.10)

• Logit model:

Pr(yi = 1|xi) = Λ(x′iβ) =
ex
′
iβ

1 + ex
′
iβ

(6.11)

Note that Φ(•) is the cdf of a standard normal distribution Λ(•) is the cdf of the standard logistic
distribution

Latent Variable
The specific functional form of F (•) can be derived from a latent variable model, where latent

refers to partially observed. Consider the following model:

y∗i = x′iβ + εi (6.12)

yi = I(y∗i > c) (6.13)

with εi as a continuously iid randomly distributed variable around zero and independent of xi.
The threshold c is a number, but we don’t need to know this number, as it only changes the
interpretation of the value and we normalize it to zero. To apply the latent variable idea, consider
the applications below:

1. Probit model: Assume εi ∼ N(0, 1), note the normalization to σ2 = 1:

y∗i = x′iβ + εi

yi = I(y∗i > 0)

Pr(yi = 1|xi) = Pr(εi > −x′iβ|x)

= 1− Φ(−x′iβ)

= Φ(x′iβ) (6.14)
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2. Logit model: Assume εi|xi ∼ Log(0, 1). Normalize V ar(εi|xi) = π2/3. Proceeding:

Pr(yi = 1|xi) = Pr(εi > −x′iβ|xi)
= 1− Λ(−x′iβ)

= Λ(x′iβ) (6.15)

Marginal Effects in Probit and Logit models
For continuous regressors, the marginal effects in these models are given by:

1. Probit model:
∂Pr(yi = 1|xi)

∂xij
=
∂Φ(x′iβ)

∂xij
= βjφ(x′iβ) (6.16)

2. Logit model:
∂Pr(yi = 1|xi)

∂xij
=
∂Λ(x′iβ)

∂xij
= βj

ex
′
iβ

1 + ex
′
iβ

(6.17)

Note that both marginal effects are a function of the coefficients and the respective pdfs for
each model. So, marginal effects change as xij changes since the pdf is not a linear function. Recall
that by definition f(•) > 0, so the sign of βj will determine the sign of the marginal effect. It’s
important to note that the coefficients are informative about the sign of the marginal effect at the
point of estimation. One should report the average marginal effect (value evaluated at some vector
x such as x̄) instead of the ML estimates of β.

6.3 Estimation

Binary response models are usually estimated using ML techniques, given that we have already
specified a distribution in the latent variable representation. Suppose we have wi, where each
observation on yi|xi is drawn from the Bernoulli distribution f(0|xi) = 1 − p(xi) and f(1|xi) =
p(xi). In this case, the pdf of yi|xi is given by:

f(yi|xi; θ0) = Pr(yi = 1|xi)yiPr(yi = 0|xi)1−yi

= F (x′iθ0)yi(1− F (x′iθ0))1−yi (6.18)

The joint pdf of the sample is given by the product of the marginal effects:

f(w1, ...,wn; θ0) =

n∏
i=1

F (x′iθ0)yi(1− F (x′iθ0))1−yi

ln [L(θ)] =

n∑
i=1

yi ln[F (x′iθ0)] + (1− yi) ln[(1− F (x′iθ0))] (Taking logs) (6.19)

6.4 Large Sample Properties

We define the binary response extremum estimator as:

θ̂ = argmax
θ∈Θ

1

n

n∑
i=1

yiF (x′iθ0) + (1− yi)(1− F (x′iθ0)) (6.20)
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The probit and logit models estimators of θ are obtained by plugging their respective form of
F (x′iθ). Provided that we satisfy the usual regularity conditions (i.e., continuity, uniform conver-
gence, etc. Appendix A.5), the estimator is consistent.

On the other hand, assuming that we specified the correct distribution, and that we satisfy
the required regularity conditions (Appendix A.6), the MLE with binary dependent variables is
asymptotically normal, with limiting distribution:

√
n(θ̂ − θ0)

d−→ N(0, J−1) (6.21)

Because we proceeded with MLE, the information matrix equality holds, and the asymptotic vari-
ance is given by:

J = E
[

f(x′iθ0)2xix
′
i

F (x′iθ0)(1− F (x′iθ0))

]
(6.22)

7 Multinomial Response Models

Multinomial responses deal with cases in which yi = {0, 1, ..., J}, and the choices or alternatives are
mutually exclusive. For these type of models, we have two cases: (1) ordered multinomial responses,
where the values attached to outcomes matter, and (2) unordered multinomial responses where the
values attached to the outcomes is arbitrary, possessing no cardinal significance.

Just like binary response models, the goal is to model the response probabilities as functions of
covariates. This time, however, we do this for each alternative j:

Pr(yi = j|xi) ≡ pj(xi|θ) (7.1)

It is important to note that different models will lead to different parametric forms for pj(xi, θ).
The object of interest is to estimate the unknown parameter θ by MLE, and its marginal effects:

∂

∂xij
pj(xi, θ) (7.2)

7.1 Estimation

For observation i, the contribution to the log-likelihood is given by:

ln[Ii(θ)] =
J∑
j=0

I(yi = j) ln[pj(xi, θ)] (7.3)

Note that for each i, only one of the indicator functions I(yi = j), j = {0, 1, ..., J} equals 1, so
we’ve taken care of any double counting. The log-likelihood function then takes the form:

ln[L(θ)] =

n∑
i=1

ln[Ii(θ)] =

n∑
i=1

J∑
j=1

I(yi = j) ln[pj(xi, θ)] (7.4)

In some models, the vector of regressors can be alternative-specific (xij), and the vector of
parameters can be alternative specific as well (θj).
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7.2 Large Sample Properties

Multinomial models are consistent and asymptotically normal under the usual regularity conditions
we established for MLE (Appendix A.5-A.6). In particular:

√
n(θ̂ − θ0)

d−→ N(0, HJ−1H) (7.5)

with:
J−1 = E

[
(∇θ ln[Ii(θ0)])(∇θ ln[Ii(θ0)])′

]
(7.6)

Nevertheless and due to misspecification, it is recommended to use the more robust formula
Avar(θ̂) = H−1JH−1, where H = E[∇θθ ln[Ii(θ0)]].

7.3 Ordered Multinomial Response Models

Suppose y corresponds to a an order response, taking values j = {0, 1, ..., J}. The ordered probit
can be derived using the standard latent variable model:

y∗i = x′iβ + εi, εi|xi ∼ N(0, 1)

where xi is a [K × 1] vector that excludes a constant term. The ordered logit is derived similarly,
replacing the normal distribution by the logistic distribution.

Now, define α1 < α2 < ... < αJ be unknown thresholds or cut points such that:

yi = 0; if y∗i ≤ α1

yi = j; if αj < y∗i ≤ αj+1, ∀ j = 1, ..., J − 1 (7.7)

yi = J ; if y∗i ≥ αJ

For example, if y = {0, 1, 2}, there are two thresholds α1 and α2. One could also interpret
having one J + 1 cut points, with α0 = −∞ and αJ+1 = +∞. Under the normality assumption,
we can derive the J + 1 response probabilities:

Pr(yi = 0|xi) ≡ p0(xi, θ) = Φ(α1 − x′iβ)

Pr(yi = j|xi) ≡ pj(xi, θ) = Φ(αj+1 − x′iβ)− Φ(αj − x′iβ), ∀ j = 1, 2, ..., J − 1 (7.8)

Pr(yi = J |xi) ≡ pJ(xi, θ) = 1− Φ(αJ − x′iβ)

Note that if J = 1, we return to the binary probit model:

Pr(yi = 1|xi) = 1− Pr(yi = 0|xi) = 1− Φ(α1 − x′iβ) = Φ(x′iβ − α1) (7.9)

and so α1 is the intercept.
The marginal effects change in response probability for small changes in xik, and are similar to

the ones derived in the binary model:

∂p0(xi, θ)

∂xik
= −βkφ(α1 − x′iβ)

∂pj(xi, θ)

∂xik
= βk[φ(αj − x′iβ)− φ(αj+1 − x′iβ)] j = 1, 2, ..., J − 1 (7.10)

∂pJ(xi, θ)

∂xik
= βkφ(αJ − x′iβ)
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Similar assumptions and derivations hold for the logit model, except that it is based on the
logistic distribution:

Pr(yi = 0|xi) ≡ p0(xi, θ) = Λ(α1 − x′iβ)

Pr(yi = j|xi) ≡ pj(xi, θ) = Λ(αj+1 − x′iβ)− Λ(αj − x′iβ), ∀ j = 1, 2, ..., J − 1 (7.11)

Pr(yi = J |xi) ≡ pJ(xi, θ) = 1− Λ(αJ − x′iβ)

with Λ(z) = ez/(1 + ez).

7.4 Unordered Multinomial Response Models

In this case, the choice variable y takes non-negative integer values with more than 2 outcomes
yi = {0, 1, ..., J}, and the order is irrelevant. The goal is to model response probabilities as a
function of the covariates.

There are several ways to model this problem, a key issue is to correctly identify the nature of
the regressors. More specifically, if the regressors are (1) constant across alternatives (i.e. age, edu-
cation), (2) varying across alternatives, same for individuals (i.e. cost bus ticket in a transportation
model), or (3) varying across alternatives and individuals (i.e. commuting time in a transportation
choice model).

1. Multinomial Logit: When the choice depends on the characteristics of individual i, but
not on attributes of the alternatives, it is typical to use a multinomial logit model (MNL):

Pr(yi = j|x) ≡ pj(xi, β) =
ex
′
iβj

1 +
J∑

m=1
ex
′
iβm

j = 1, 2, ..., J (7.12)

Because the response probabilities sum to 1, we impose the natural restriction:

Pr(yi = 0|x) ≡ p0(xi, β) =
1

1 +
J∑

m=1
ex
′
iβm

(7.13)

with marginal effects:

∂pj(xi, β)

∂xik
= pj(xi, β)

βjk −
n∑

m=1
βmke

xi,β

1 +
n∑

m=1
exi,β

 (7.14)

In this case, the sign of βjk is uninformative about directional effects, unlike the binary and
ordered models. An easier interpretation can be obtained by using the log of the odds-ratio.
The odds-ratio between the base “0” alternative, and the jth alternative is given by:

pj(xi, β)

p0(xi, β)
= exi,βj j = 1, 2, ..., J (7.15)

Thus, the change in the odds-ratio for a small change in xik is given by:

∂

∂xik

pj(xi, β)

p0(xi, β)
= βike

xi,βj j = 1, 2, ..., J (7.16)
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A positive βik means that an increase in xik also increases the probability of choosing option
j relative to the base option 0. The log odds-ratio is then given by:

ln

[
pj(xi, β)

p0(xi, β)

]
= xi, βj j = 1, 2, ..., J (7.17)

with βjk as the marginal effect of xik on the log-odds of choosing alternative j relative to the
base alternative “0”.

2. Conditional Logit: The conditional logit model (CL) is appropriate when choices depend
on the characteristics of each alternative, or possibly when they depend on individuals across
alternatives. The CL is similar to MNL, in fact MNL can be derived from the CL model
under restrictions about the types of covariates and the alternative vector; likewise, CL can
be derived from a utility maximization/latent variable framework, like the binary logit model.

Consider the probabilistic choice model:

y∗ij = x′ijβ + εij j = 0, 1, 2, ..., J (7.18)

where εij are unobservable factors affecting tastes for each alternative j (independent across
j), and xij is a [K × 1] vector that varies across alternatives and possibly across individuals
across alternatives. For instance, suppose j indexes alternative modes of transportation, and
xij the time associated with transportation alternative j for individual i and the price of bus
tickets.

We restrict xij to include only elements that vary across j. For example, xij excludes a
constant term. Individuals choose the alternative j that maximizes their utility:

yi = argmax(y∗i0, y
∗
i1, ..., y

∗
iJ) (7.19)

Depending on the distribution of εij , evaluating the probability that yi takes values between
0 and J can be challenging, and in general requires the computation of a J − 1 dimensional
integral.

In 1974, McFadden showed that if errors εij follow an iid type I extreme value distribution,
are independent across alternatives, and independent of xij , then:

Pr(yi = j|xi) ≡ pj(xi, β) =
ex
′
ij

J∑
m=0

ex
′
ijβ

j = 0, 1, 2, ..., J (7.20)

The extreme value type I distribution has a unique mode at 0, and a variance of 1.65. The
cdf is given by: F (z) = e−e

z
.

The marginal effects in the conditional logit model have the usual interpretation. That is,
the sign on βk is informative about the directional effect of a change in the regressor xijk:

∂pj(xi, β)

∂xijk
= βkpj(xi, β)(1− pj(xi, β)) j = 1, 2, ..., J (7.21)

The main issue with the MNL and the CL models is the property of Independence of Irrelevant
Alternatives (IIA). Note that the odd-ratios between 2 alternatives (say h and m) only depend
on the characteristics of the h & m alternatives:

ph(xi, β)

pm(xi, β)
=
ex
′
ihβ

ex
′
imβ

(7.22)
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This issue implies that adding another alternative, no matter how close a substitute it is for
h or m, it will not change odds-ratio between h & m. This problems arises directly as a
consequence of the errors assumed to be uncorrelated across alternatives.

To solve this problem we need to allow for correlation across alternatives, where there are
several approaches to do so:

(a) Nested Logit Model: Nest similar alternatives in subsets, where every alternative must
be assigned to only one subset.

(b) Random Coefficient Logit Model: It allows for person-specific marginal utilities in a
latent variable model:

y∗ij = x′ijβi + εij j = 0, 1, 2, ..., J (7.23)

which we can rewrite as:

y∗ij = x′ijβi + (εij + x′ij(βi − β̄)) j = 0, 1, 2, ..., J (7.24)

and then require instruments to proceed.

(c) Multinomial Probit: We can allow for correlated errors in a multivariate probit

y∗ij = x′ijβi + εij j = 0, 1, 2, ..., J (7.25)

with:

ε = vec(εij) (7.26)

ε ∼ (0,Σ) (7.27)

where Σ includes non zero entries on the off-diagonal to allow for correlations across
alternatives. This method is also computationally challenging, and it’s not as commonly
used.

8 Censored Regression Models

These models deal with data in which the dependent variable is censored, but the independent
variable is perfectly observed. Consider the latent variable model:

y∗i = x′ijβi + εi (8.1)

εi|xi ∼ N(0, σ2) (8.2)

Accordingly, we can have data that is censored from above yi = min{y∗i , U}, censored form
below yi = max{y∗i , L}, or both.

8.1 Tobit Models

The tobit model is obtained by setting the threshold L to 0 in the censored regression model:
yi = max{y∗i , 0}. Otherwise, the issue is that without normalization, the intercept of the index x′β
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is meaningless. Note that changing from min to max (accommodating the censoring from above or
below) does not change the magnitude of the estimator for β, but it does change the sign:

yi = min(y∗i , U)

⇐⇒ yi − U = min(y∗i − U, 0)

⇐⇒ −(yi − U) = max(U − y∗i , 0)

If we use a linear regression of yi on xi, it yields an inconsistent estimator for β, since E[yi|xi]
is not linear in this model:

E[yi|xi] = Pr(yi = 0|xi)× 0 + Pr(yi > 0|xi)× E[yi|yi > 0,xi] (8.3)

Now consider the following expression:

Pr(yi > 0|xi) = Pr(y∗i > 0|xi)

= Pr(
εi
σ
> −x

′
iβ

σ
|xi)

= 1− Φ

(
−x
′
iβ

σ

)
= Φ

(
x′iβ

σ

)
(8.4)

Invoking the Mills Ration2 on theconditional mean:

E[yi|yi > 0,xi] = E[x′iβ + εi|εi > −x′iβ,xi]
= x′iβ + E[εi|εi > −x′iβ,xi]

= x′iβ + σE
[
εi
σ
|εi
σ
> −x

′
iβ

σ
,xi

]

= x′iβ + σ
φ
(
−x′iβ
σ

)
1− Φ

(
−x′iβ
σ

)
= x′iβ + σ

φ
(
x′iβ
σ

)
Φ
(
x′iβ
σ

) (8.7)

which implies:

E[yi|xi] = Pr(yi > 0|xi)× E[yi|yi > 0,xi]

= Φ

(
x′iβ

σ

)x′iβ + σ
φ
(
x′iβ
σ

)
Φ
(
x′iβ
σ

)
 (8.8)

(8.9)

2Let Z ∼ N(µ, σ2) and d be a constant, then:

E[Z|Z > d] = µ+ σ
φ
(
d−µ
σ

)
1− Φ

(
d−µ
σ

) (8.5)

if d = 0:

E[Z|Z > 0] = µ+ σ
φ
(
µ
σ

)
Φ
(
µ
σ

) (8.6)

In the statistics literature, equation (8.5) is known as the Hazard Function, while equation (8.6) is known as the
Inverse Mills Ratio.
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Therefore, a linear regression of yi on xi yields an inconsistent estimator for β, but the non-
linear regression based on the expression for E[yi|xi] yields a consistent estimator. Because of this
property, it makes sense to use a maximum likelihood estimator, note that yi|xi ∼ N(x′iβ, σ

2) for
yi > 0, so:

f(yi|yi > 0,xi;β, σ) =
1√
2πσ

e
− 1

2

(
yi−x

′
iβ

σ

)2

=
1

σ
φ

(
yi − x′iβ

σ

)
(8.10)

Let y0i = I(yi = 0). The density of yi|xi is then given by:

f(yi|yi > 0,xi;β, σ) =

(
1− Φ

(
xiβ

σ

))yi0 ( 1

σ
φ

(
yi − xiβ

σ

))1−y0i
(8.11)

with the following log-likelihood function:

ln[L(β, σ)] =
n∑
i=1

y0i ln

(
1− Φ

(
xiβ

σ

))
︸ ︷︷ ︸

Censored data

+ (1− y0i) ln

(
1

σ
φ

(
yi − xiβ

σ

))
︸ ︷︷ ︸

Not censored data

 (8.12)

It is important to note that the first section of the tobit model is from a probit model, and
the second component is from a regression model with normal errors. The tobit model allows
for the estimation of β and σ while the intercept remains meaningless. The MLE is consistent
and asymptotically normal under the usual assumptions. Nonetheless, the tobit MLE is generally
inconsistent under mis-specification, or in the presence of heteroskedasticity.

8.2 Semi-parametric Estimators

Semi-parametric estimators rely less on distributional assumption and are now the standard ap-
proach for dealing with censored data. The main observation is that for a convex function g(X),
E[g(X)] ≥ g(E[X]) but med[g(X)] = g(med[X]). The Censored Least Absolute Deviations (CLAD
)estimator uses this property by:

y∗i = x′iβ + εi (8.13)

med(εi|xi) = 0 (8.14)

yi = max(y∗i , 0) (8.15)

Therefore, we replace the normality assumption with the med(εi|xi) = 0. It follows that:

med(yi|xi) = med(max(y∗i , 0)|xi)
= max(0,med(y∗i , 0)|xi)
= max(0,xiβ) (8.16)

To proceed with the estimation of β, we now use the fact that the mean absolute prediction
error E[|yi− g(xi)|] is minimized at g(xi) = med(yi|xi). Therefore, the CLAD estimator is defined
as:

β̂ = argmin
b∈B

1

n

n∑
i=1

|yi −max(0,xiβ)| (8.17)

This estimator is consistent and asymptotically normal, but only if additional conditions are met
because the function is not twice continuously differentiable.
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9 Appendix

A Main Theorems and Lemmas from Newey and Mc Fadden
(1994)

This appendix summarizes the main theorems and lemmas that give the regularity conditions for
extremum estimators. Let {wi = (yi,xi) : i = 1, .., n} be a sample of iid data. Let θ0 be the true

value parameter of interest, and θ̂ = argmax
θ∈Θ

= 1
n

n∑
i=1

a(wi,θ) be an estimator of θ0.

A.1 Uniform Law of Large Numbers

Let a(wi,θ) be a function from Θ→ R. Lemma (2.4) says that if:

1. wi is iid.

2. Θ is compact.

3. a(wi,θ) is continuous ∀ θ ∈ Θ.

4. ∃d(wi) : ||a(wi,θ)|| ≤ d(wi), ; ∀ θ ∈ Θ and E[d(wi)] <∞.

Then E[a(wi,θ)] is continuous in θ, and:

1

n

n∑
i=1

a(wi,θ)
u.p−−→ E[a(wi,θ)] over Θ (A-1)

A.2 Basic Consistency Theorem

Theorem (2.1) says that if:

1. Identification: Q0(θ0) ≡ E[a(wi,θ)] is uniquely maximized at θ0.

2. Compactness: Θ is compact.

3. Continuity: Qn(θ) is continuous in θ over Θ.

4. Uniform convergence: Qn(θ)
u.p.−−→ Q0(θ) ∀ θ over Θ.

Then:

θ̂
p−→ θ0 (A-2)

A.3 Consistency with Concave Objective Functions

Theorem (2.7) says that if:

1. Identification: Q0(θ0) uniquely maximized at θ0.

2. Convex parameter space: θ0 is an element of the interior of a convex set Θ ⊂ RK .

3. Concave objective function: Qn(θ) is concave in θ.

4. Pointwise convergence in probability: Qn(θ)
p−→ Q0(θ) ∀ θ ∈ Θ.

Then:
θ̂

p−→ θ0 (A-3)

25



A.4 Asymptotic Normality

Suppose that θ̂
p−→ θ0. Theorem (3.1) says that if:

1. Parameter space: θ0 ∈ int Θ.

2. Differentiability: Qn(θ) is twice differentiable (in a neighborhood on θ0).

3. Central limit theorem:
√
n∇θQn(θ0)

d−→ N(0, J)

4. Continuity and uniform convergence of expected Hessian: H(θ) ≡ E[∇θθa(wi,θ)] is

continuous in θ and ∇θθQn(θ)
u.p.−−→ H(θ) (in a neighborhood on θ0).

5. Limit Hessian invertible: H ≡ H(θ0) is non-singular.

Then,
√
n(θ̂ − θ0)

d−→ N(0, H−1JH−1) (A-4)

A.5 Consistency of Maximum Likelihood Estimators

Suppose that (yi,xi) are continuous random variables with conditional pdf f(yi|xi;θ0) where

f(yi|xi;θ) > 0. Let θ̂ = argmax
θ∈Θ

Qn(θ) = argmax
θ∈Θ

1
n

n∑
i=1

f(yi|xi;θ) be an estimator of θ0. The-

orem (2.5 ) says that if:

1. Identification: Q0(θ) = E[ln[f(yi,xi;θ)]] is uniquely maximized at θ0 ∈ Θ.

2. Compactness: θ0 ∈ Θ, a compact set.

3. Continuity: ln[f(yi,xi;θ)] is continuous at each θ0 ∈ Θ.

4. Uniform convergence: E[ sup
θ0∈Θ

| ln[f(yi,xi;θ)]|] < ∞. This condition impies uniform con-

vergence, i.e., Qn(θ)
u.p.−−→ Q0(θ) over Θ and allows to interchange the differentiation and

integration operators.

Then,
θ̂

p−→ θ0 (A-5)

A.6 Asymptotic Normality of MLE

Suppose that θ̂
p−→ θ0. Theorem (3.3) says that if:

1. Parameter space: θ0 ∈ int Θ.

2. Differentiability: ln[f(yi,xi;θ)] has continuous 1st and 2nd derivatives and f(yi,xi;θ) > 0.

3. Central limit theorem:
√
n∇θQn(θ0) =

√
n 1
n

∑
i∇θ ln[f(yi,xi;θ0)]

d−→ N(0, J), and J =
E[(∇θ ln[f(yi,xi;θ0)])(∇θ ln[f(yi,xi;θ0)])′] = −H = −E[∇θθ ln[f(yi,xi;θ0)]]

4. Continuity and uniform convergence of expected Hessian: H(θ) ≡ E[∇θθ ln[f(yi,xi;θ0)]]

is continuous in θ and ∇θθQn(θ)
u.p.−−→ H(θ).

5. Limit Hessian invertible: H ≡ H(θ0) is non-singular.

Then,
√
n(θ̂ − θ0)

d−→ N(0, H−1JH−1) = N(0, J−1) (A-6)
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A.7 Consistency of GMM Estimators

Suppose that Wn
p−→W , a positive semi-definite matrix. Let θ0 be the true value of the parameter of

interests, and θ̂ = argmax
θ∈Θ

Qn(θ) = argmax
θ∈Θ

−g(wi,θ)′Wng(wi,θ) be an estimator for θ0. Theorem

(2.6) says that if:

1. Identification: E[g(wi,θ)] = 0 only if θ = θ0

2. Compactness θ0 in θ0, a compact set.

3. Continuity g(wi,θ) is continuous at each θ in Θ

4. Uniform convergence E[sup
θ∈Θ

]||g(wi,θ)|| <∞, so that Qn(θ)
Q−→0 (θ) over Θ.

Then,
θ̂

p−→ θ0 (A-7)

A.8 Asymptotic Normality of GMM

Suppose that the assumptions for consistency hold, so θ̂
p−→ θ0. Theorem (3.2) says that if:

1. Parameter Space θ0 ∈ in θ

2. Differentiability g(wi,θ) has continuous derivatives.

3. CLT
√
ngn(θ)

d−→ N(0,Ω), where Ω = E[(g(wi,θ))(g(wi,θ))]

4. Uniform convergence G(θ) ≡ E[∇θg(wi,θ)] is continuous in θ and ∇θgn(θ)
u.p−−→ G(θ)

5. Full rank For G ≡ G(θ0), G′WG is non-singular.

Then,
√
n(θ̂ − θ0)

d−→ N(0, (G′WG)−1G′WΩWG(G′WG)−1) (A-8)

Note that this result suggests that the optimal weighting matrix is Ω−1, as it simplifies the
asymptotic variance to (G′Ω−1G)−1.
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